3.2.4 关闭和更新拉取线程管理器


3.2.4 关闭和更新拉取线程管理器

再平衡操作中我们已经分析了分区的所有权、分区的分配,剩下和l拉取线程(Consul’lerFetcherThread)相关的是:关闭和更新消费者的拉取线程管理器(Consul’lerFetcherManager,下文简称“拉取管理器”)。再平衡操作前,closeFetchersForQueues()方法关闭拉取管理器时,也要关闭它管理的所有线程。

除了拉取线程应该关闭,和拉取线程相关的数据结构也需要清理,比如分区信息对象的队列需要
清空。另外,消费者在拉取数据时会周期性地提交偏移量到ZK中,在关闭拉取管理器时也要提交一次
所有分区的偏移量。相关代码如下:
在这里插入图片描述
**注意:**关闭拉取管理器时提交偏移量和写文件的过程类似:每条数据迄加到文件中并没有立即刷写到磁盘,而是先写到磁盘缓存中,然后定时地刷写到磁盘上,最后在关闭文件时也要刷写一次磁盘。如果没有最后一次的强制和l写,有可能会导致仍然还在磁盘缓存中的数据丢失。

再平衡操作后,消费者重新分配到了分区,就可以通过拉取管理器启动拉取钱程来拉取分区消息。updateFetcher()方法会更新拉取管理器管理的分区信息数据,其中allPartitioninfos变量的数据来自于再平衡操作时的topicRegistry。相关代码如下:
在这里插入图片描述


相关推荐
<p> 课程演示环境:Windows10  </p> <p> 需要学习<span>Ubuntus</span>系统<span>YOLOv4-tiny</span>的同学请前往《<span>YOLOv4-tiny</span>目标检测实战:训练自己的数据集》 <span></span> </p> <p> <span> </span> </p> <p> <span style="color:#E53333;">YOLOv4-tiny</span><span style="color:#E53333;">来了!速度大幅提升!</span><span></span> </p> <p> <span> </span> </p> <p> <span>YOLOv4-tiny</span>在<span>COCO</span>上的性能可达到:<span>40.2% AP50, 371 FPS (GTX 1080 Ti)</span>。相较于<span>YOLOv3-tiny</span>,<span>AP</span><span>FPS</span>的性能有巨大提升。并且,<span>YOLOv4-tiny</span>的权重文件只有<span>23MB</span>,适合在移动端、嵌入式设备、边缘计算设备上部署。<span></span> </p> <p> <span> </span> </p> <p> 本课程将手把手地教大家使用<span>labelImg</span>标注使用<span>YOLOv4-tiny</span>训练自己的数据集。课程实战分为两个项目:单目标检测(足球目标检测)多目标检测(足球梅西同时检测)。<span></span> </p> <p> <span> </span> </p> <p> 本课程的<span>YOLOv4-tiny</span>使用<span>AlexAB/darknet</span>,在<span>Windows10</span>系统上做项目演示。包括:<span>YOLOv4-tiny</span>的网络结构、安装<span>YOLOv4-tiny</span>、标注自己的数据集、整理自己的数据集、修改配置文件、训练自己的数据集、测试训练出的网络模型、性能统计<span>(mAP</span>计算<span>)</span>先验框聚类分析。 <span> </span> </p> <p> <span> </span> </p> <p> 除本课程《<span>Windows</span>版<span>YOLOv4-tiny</span>目标检测实战:训练自己的数据集》外,本人推出了有关<span>YOLOv4</span>目标检测的系列课程。请持续关注该系列的其它视频课程,包括:<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测实战:训练自己的数据集》<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测实战:人脸口罩佩戴识别》<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测实战:中国交通标志识别》<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测:原理与源码解析》<span></span> </p> <p> <span> <img alt="" src="https://img-bss.csdnimg.cn/202007061503586145.jpg" /></span> </p> <p> <span><img alt="" src="https://img-bss.csdnimg.cn/202007061504169339.jpg" /><br /> </span> </p>
©️2020 CSDN 皮肤主题: 酷酷鲨 设计师:CSDN官方博客 返回首页